Research, Development and Demonstration of Packaged Cooling, Heating and Power Systems for Buildings (BCHP)

United Technologies Research Center T. Wagner, T. Rosfjord, and B. Knight

Pratt & Whitney Canada
Carrier
Detroit Edison Energy Technologies

R. DeVault Oak Ridge National Laboratory Contract 4000009518

Agenda

- Program goals and approach
- Fast Track Facility Preparation
- BCHP Market
- Screening Tool Development
- Screening Tool Sample Results
- Program Progress and Plans
- Summary

DOE Goals for BCHP Program

- Confirm BCHP national energy savings potential (18 GW)
- Assess building market potential and determine preferred BCHP module characterization
- Identify most likely (optimized) BCHP system to achieve significant savings
- Test/Demonstrate BCHP modules that are foundation for future product offerings
- Define benefits of modular BCHP approach achieving future energy savings

Energy demand is driven equally by industrial, commercial, and residential use

Characteristics of Attractive Customer Segments

- Average peak load > 100 kW
- Ability to use significant amounts of thermal output:
 - chilled water
 - hot water
 - steam
 - hot air
 - hot process liquid
- Existing user of desiccant system
- High load factor average energy use / peak use
 - 24/7 operation
 - continuous process manufacturing
- Outage sensitive

UTC Team Program Stages

Proceeds from market screening through prototype demonstration

Task 1 Project Plan (Nov 01)

Task 2 Packaged System Concept (Jun 02)

- Market Sector Screening
- Thermally Activated Technologies
- System Concept Definition and Integration

Task 3 System Optimization and Specification (Aug 02)

- Model Tool Development
- Market Area Characterization and Economic Analysis
- Target Application Selection

Task 4 Test Methods, Procedures and Standards (Aug 02)

- Standards and Codes
- Performance Measurement Techniques

Task 5 & 6 Prototype Develop and Testing (May 03)

- Fast Track Risk Reduction
- Optimized System

Microturbine Developments are Enabling BCHP

Source: "Absorption Technologies for Buildings: Cooling, Heating and Power Systems (BCHP) Systems, ", by Sweetser,I R., DeVault, R, and Foley, G., Heating/Piping/Air Conditioning Engineering, July 2000, pp. 51- 56.

Fast Track Facility Preparation

Single Effect Absorption Chiller

Heat Recovery Unit

400 kW Microturbine

Test Cell

Air Handler Unit

BCHP Microturbine Competitive in Many States

Attractive economics for > 40% of US population

- 4-year customer payback of installed microturbine equipment @ \$700/kW
- No credit taken for reliability, low emissions, or avoided transmission upgrade

US Commercial Market > 100 kW

Office Building Waste Heat Utilization Opportunities

Up to 50% of building services can be met using "free" waste heat

	%LOAD (TYP)	TYPICAL SYSTEM	CHP SUITABILITY FOR INSTALLED BASE	
Space Heating	28	Gas Boiler (large, > 25000 ft^2) Gas Furnace (small)	Large buildings: waste heat driven hot water (especially for perimeter heating)	Υ
Space Cooling	11	Vapor compression chiller (large) Direct expansion (small)	Large buildings: waste heat driven absorption chiller to produce chilled water. Use existing fan coils/air handlers	Y
Lighting	29	Standard fluorescent lighting	None	N
Hot Water	9	Gas Boiler (large) Gas Water Heater (Small)	Waste heat driven	Υ
Other	23	Includes computers, elevators, telecommunications etc.	Electric loads	N

Typical load profiles

Screening Tool Development

Tools for rapid evaluation of design space

- A series of increasingly complex screening and assessment tools have been developed to assist in definition of BCHP modules that will provide an optimum integrated system
- Tools can be applied to assess effects of many application and system variables
- Screening tools can be applied to selected building types to match current and future energy requirements and product designs and controls needed for BCHP systems.

Screening Analysis Parameters

- Microturbine configuration:
 - simple cycle
 - recuperated cycle
 - recuperated cycle with Organic Rankine Cycle (ORC)
- Operating and design matching strategies
 - matching electricity requirements
 - matching thermal requirements
 - substitution of absorption chillers for electrically-based cooling
- Number of BCHP units and building load
- Building electrical/thermal ratio range: 0.25 < E/T < 4.0
- Percent load used for electric A/C (to assess absorption chiller opportunities)
- Annual electric load factor
- Allowable costs of BCHP equipment
- Performance and cost tradeoffs
- State energy costs
- Climatic regions

Screening Tool Sample Result – Microturbine Configuration

Efficiency and allowable cost for recuperated cycle

Inputs: state, electric demand and load factor, number of microturbines, payback period, percent electric load used for AC

Observation: E/T < 1 Match E strategy favorable E/T > 1 Absorption strategy favorable

Screening Tool Sample Result – Microturbine Configuration

Efficiency and allowable cost for simple cycle

Inputs: state, electric demand and load factor, number of microturbines, payback period, percent electric load used for AC

Observation: E/T < 1.5 Absorption strategy favorable; but allowable cost lower than recuperated cycle

Future Key Milestones Lead to BCHP Demonstration

2002

- Select optimized configuration (Jun)
- Finalize target applications (Aug)
- Define packaged system performance measurement techniques (Aug)
- Assemble Fast Track Risk Reduction System (Jun)
- Modify absorption chiller for optimized system (Oct)
- Test Fast Track Risk Reduction System (Dec)

2003

- Install Optimized System (Feb)
- Test Optimized System (Apr)
- Complete data analysis and final report (May)

Summary

UTRC Program Accomplishments

- Identified states and building stock amenable to BCHP
- Cost model and rating methodology developed
- Preparation of test facility and fast track system initiated

BCHP systems have great public benefit

- Achieve fuel utilization >70%
- Reduce CO2 emissions
- Expand customer choice for reliable, secure power
- Provide customer with electricity, building heating/cooling, and hot water
- Avoid outages and infrastructure investments